Mitigating The Environmental Impact Of Data Centers

- Advertisement -

Fueled by our increasingly digital lives, the importance of data centers has risen substantially over the last decade. They are the backbone of the Internet. The latest estimates suggest that the average connected person now accesses data center servers 3,000 to 4,000 times per day, as demand for digital services grows. Major digital operators are implementing a significant push to reduce the energy consumption of all data center components to mitigate their growing environmental impact. Semiconductor technologies are at the center of these efforts.

Summary of what happens every minute on the Internet

- Advertisement -
  • 28,000 subscribers watching films/programs on Netflix
  • €1.6 million spent on online shopping
  • 500 hours of video content uploaded onto YouTube
  • 2 million swipes made on Tinder
  • 700,000 images shared on Instagram
  • 9,000 new connections made on LinkedIn
  • 5,000 downloads from TikTok

There are nearly 8,000 major data centers globally as of January 2021. A study by the Shift project estimates that the digital industry in general emits around 4% of the world’s greenhouse gases, with its energy consumption increased by nearly 6% year-on-year.

Data centers and climate change

The world’s largest data center operators are taking bold steps to reduce their energy consumption levels. The Climate Neutral Data Center Pact, representing data center operators and trade associations, targets to make data centers climate neutral by 2030. The initiative was formed in 2021 and signatories include the world’s biggest data center operators including Google, IBM, NTT, Amazon Web Services, Microsoft, and Intel. There are two complementary methods to achieve that objective. One is to generate they electricity they require solely through renewable energy sources, such as wind or solar. The other is to curb electricity usage by making their systems more efficient.

Electricity usage within data centers

One of the key challenges faced by any electronic system, including those in modern data centers, is the efficient use of power. Maximizing the data center’s power usage effectiveness (PUE) is therefore the primary objective of every data center operator. Although there is usually an AC power source, most of the circuitry in a data center (including the servers), runs on DC. Consequently, it must be converted to make it applicable. Each subsystem uses a different voltage, so there are further conversion steps required. Finally, each voltage must be routed to its specific location within the server where it is used.

All these power conversions come with a ‘transaction cost’ in terms of lost power. This is analogous to the way that people are charged a fee when they change euros into yen or dollars. In the latter case, the transaction fee is the only thing lost, but that is not true for power conversions. Lost power does not simply disappear. Instead, it manifests itself in the form of heat. The more inefficient the device is, the more heat is lost – a double penalty for inefficiency since cooling requires more energy.

Conventional cooling methods include the use of heat sinks, but these add size and weight. This is anathema for data centers, as the facilities are very expensive. The more computing power that can be crammed into the least space, the greater the profitability that operators can derive. Cooling fans are another possibility, but they require electricity, which adds to operational expenses, as well as the environmental impact.

Higher-performance semiconductors – the gateway to enhanced server efficiency

The development of new wide bandgap materials, like silicon carbide (SiC) and Gallium Nitride (GaN), is helping to improve the data center’s PUE. These innovative materials enable significant improvements in energy efficiency compared with traditional, silicon-based power devices and other alternatives. Specialized semiconductors made from new wide bandgap materials can run at much faster speeds than those of the past and allow far more efficient conversion. These characteristics also mean that the power conversion hardware needs fewer and smaller components resulting in savings in weight and space.

This has enabled a reduction in the volume of the power subsystem by around 30%, compared to actual systems using pure silicon-based devices.

Higher power densities, with concurrent reductions in size, allow for smaller units that prove significantly easier to modularize. This facilitates installation and removal helping to reduce maintenance costs, which are critical for data centers, as they must operate continuously.

Improving energy efficiency

STMicroelectronics offers a number of solutions that help data centers become more power efficient from climate control to storage power management. Key among these are silicon-carbide MOSFETs and gallium-nitride HEMTs that can transfer power at 98% efficiency or better. This enables data center power supplies to attain higher efficiency levels and greater power densities compared to the use of silicon technologies alone. Consequently, they can form the basis of power converters that comfortably satisfy new European Union efficiency benchmarks, which require 94% efficiency to be maintained, even when systems are running at 50% of their maximum power.

Demand for digital services continues to grow, fueled by Artificial Intelligence (AI), 5G, and the Internet of Things (IoT). Keeping power usage under control is an important piece of the sustainability puzzle for data centers. The integration of SiC and GaN based technology into data centers enables them to operate at higher efficiencies, maximize floor space, and reduce operating costs across the facility while helping data center operators meet their sustainability goals.


 

- Advertisement -

Most Popular Articles

MACOM Secures Federal CHIPS Funding 

0
The Lowell Project is backed by an anticipated $15.7 million in state matching funds from the Healey-Driscoll Administration and Massachusetts state agencies. The Healey-Driscoll administration...
Startup Start Up, business motivational inspirational quotes, words typography lettering concept

Startups That Are Shaping India’s Semiconductor Future

0
Backed by bold government initiatives and the DLI scheme, India is seeing its semiconductor revolution with homegrown startups driving innovation in AI, IoT, 5G,...

Ahaan Solar Launches Advanced TOPCon Solar Modules

0
To support India’s push for cleaner, more sustainable energy, Ahaan Solar rolls out advanced TOPCon solar modules, eyeing efficiency and affordability. Ahaan Solar, an...

ETO Motors, Uber Collaborate For Sustainable Transport In Hyderabad

0
Aiming to make electric 3-wheelers more affordable and empowering drivers for a greener future, ETO Motors teams up with Uber to launch the ‘Drive...

CCPA Seeks Response From Apple Over iPhone Issues

0
Amidst growing government scruitny for consumers, CCPA issues notice to Apple over iPhone performance issues post-iOS 18 update, as the tech giant expands its...

“Support From Authorised Stockists Or Manufacturers Within India Would Greatly Benefit The Electronics Industry”...

0
Lacking domestic manufacturing in India, supply chain woes, costs, and tight deadlines are the biggest challenges of the EMS industry. By tackling these, can...
Ford Tamer, LATTICE Semiconductors

“India offers exceptional access to talent in silicon design, software engineering, AI development” –...

0
While the electronics industry stresses strengthening India’s design capabilities, low-power FPGA solutions provider Lattice Semiconductor set up a research and development centre in Pune...
Ramachandran Natarajan, Co-Founder And MD, Mel Systems and Services Ltd

“Building ATEs Often Involves Purchasing Instruments From Overseas Manufacturers, As High-Quality Instrument Manufacturing In...

0
Not $300 billion, but India can achieve $500 billion in electronics production by 2030! However, cost and supply chain issues continue to linger. Combatting...
Prem Kumar Vislawath, Founder of Marut Drones

“Our Drones Are Addressing Critical Needs In Multiple Industries” – Prem Kumar Vislawath, Founder...

0
Can drones be the future of farming and forestry? Prem Kumar Vislawath, Founder of Marut Drones, discusses their product AG 365 and the company’s...
Akshay Adhalrao, Managing Director, Dynalog India

“We Sometimes Develop Reverse-Engineered Versions When Sourcing Components From Foreign Manufacturers To Prepare For...

0
With automation catering to various industries, including highly sensitive ones like defence, how can risks related to sensitive data be tackled? Can India reduce...
Startup Start Up, business motivational inspirational quotes, words typography lettering concept

Startups That Are Shaping India’s Semiconductor Future

0
Backed by bold government initiatives and the DLI scheme, India is seeing its semiconductor revolution with homegrown startups driving innovation in AI, IoT, 5G,...

Elanpro Accelerates Automated Retail With Wendor Acquisition

0
Aiming expansion in smart retail, manufacturing and revenue, Elanpro invests 41% in smart vending startup Wendor, boosting its push into AI and IoT-powered vending....

Assam CM Seeks South Korean Investment In Semiconductors

0
Boosting ties ahead of Advantage Assam 2.0 summit, Assam CM Himanta Biswa Sarma’s Seoul visit sparks talks with top South Korean firms on semiconductors...

Noida’s Electronics Startup Grid OS Raises $500,000

0
Eyeing to expand its product offerings and tackle supply chain challenges, Noida-based electronics startup secures $500,000 led by multiple investors like Anupam Mittal and...
Shubham Vishvakarma, Founder and Chief of Process Engineering, Metastable Materials

Battery Recycling Redefined By Metastable’s Innovative Approach 

0
Using mining-inspired mineral processing techniques, Bengaluru-based startup Metastable is pushing new horizons in lithium-ion battery recycling! Founded in 2021 by S. Vishvakarma and M. Uppala,...

Industry's Buzz

Learn From Leaders

Startups